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ABSTRACT 
 
Geosynchronous objects appear as unresolved blurs when observed with even the largest ground-based 
telescopes.  Due to the lack of any spatial detail, two or more objects appearing at similar brightness levels 
within the spectral bandpass they are observed are difficult to distinguish.  Observing a pattern of such 
objects from one time epoch to another leads to deficiencies in associating individual objects before and 
after the observation.  Only by invoking an additional discrimination measure can the individual objects be 
kept separated between separate observations.  A methodology for accomplishing this is described in this 
paper. 
 

1. INTRODUCTION 
 
Closely spaced objects present a particular challenge to SSA.  For the discussions that follow, by closely 
spaced is meant a grouping of two or more objects that are distant and individually unresolved, but are 
separated sufficiently to be resolved from one another.  These groupings could be in a congested area of the 
geosynchronous belt, for example.  The problem for SSA is that observations are not continuous, but rather 
episodic.  When a grouping of two or more objects is re-observed, the relative positions may have changed.  
In the case of geosynchronous objects with similar brightness levels and no light curve signature, the 
identity of the individual objects can be lost between the observations. 
 
Although problematic for SSA, the above scenario is an interesting application of the separate areas of 
mathematics as well as astronomical observation techniques.  The math area that describes this problem 
well is Group Theory – and specifically the permutation groups.  The latter is easily understood for the 
grouping of two closely-space objects:  the permutation group is P2, consisting of the identity (no change in 
relative positions) and a transposition (or exchange of the two objects), and is a group of order 2.  For 3 
objects, P3 has six permutations (identity, three odd, and two even, cyclical permutations), and is obviously 
of much increased complexity relative to P2.  It should be understood that a practical application of the 
theory is possible for all observed patterns of objects – one only needs to order them in a consistent (and 
unique) way; e.g., by increasing longitude or, more robustly, by distance metric involving both latitude and 
longitude. 
 

2. RATIOS OF OBSERVED BJECT SIGNALS 
 
The implications of group theory for this SSA application become more profound when coupled with the 
discrete number of ratios corresponding to object signals.  Here, we envision a ‘signature’ for each object 
that is propagated through the atmosphere and measured by a sensor with a multiplicative calibration 
equation.  This class of observation applies to systems with linear response and includes spectrometers 
(which have a separate multiplicative correction for each wavelength channel) as well as common 
broadband imagers.  The atmospheric correction is also multiplicative (and distinct for the different 
wavebands), so the corrected SSA ‘signature’ looks like  
 

SSi
j = (1/Tj Rj) Sigi

j, 
 
… where j is the channel (e.g., waveband) and i is the observed object.  The factors Tj and Rj are 
atmospheric transmission and instrumental response.  (We focus on ground-based here, but with 
atmospheric transmission ignored, results should be applicable to space-based observations as well.)   
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In an effort to facilitate the speed of understanding these CSO signatures and performing the identify 
function, it makes sense to avoid the atmospheric correction process (which can have relatively short-term 
variability and adds complexity to data reduction) and instead deal with ratios of signals between pairs of 
objects.  These ratios are independent of both atmospheric transmission variations and instrumental 
response.  For the 2-object cluster, there’s only one ratio and its inverse; these we denote by R12 (and 
R21), the ratio of the signal from ‘Object 1’ to the signal from ‘Object 2’ (and vice-versa).  The S2 
permutation group applied to this ratio gives R12 (the identity, with no exchange of objects) and R21 (= 
1/R12, the simple exchange of the two objects).  Thus, in the case of two objects having a unique ratio of 
‘signatures’ (e.g., spectral), we can identify the individual objects even though they might be of similar 
brightness and have surreptitiously changed positions between observations with a standard “metric” 
sensor. 
 
The ‘signature ratios’ from three objects also follow from the S3 permutation group.  The allowed ratios 
are:  {R12, R13, R23, and their inverses R21, R31, and R32}.  Here again we assume that although the 
brightnesses of the objects observed with a standard metric sensor for SSA are similar to the point of not 
allowing identification, the SSA ‘signature ratios’ are all distinct – derived from spectral signals in a way 
described below. 
  
Below are the results of the S3 permutation group applied to the first set of ratios of the first observations 
{Rij}, and those newly observed at a later epoch, {Rij’}. 

 
Table 1.  Transformation of observed ratios under all possible permutations.  (Rij’ 

denotes second set of observations.) 
Permutation R12’ R13’ R23’ 

Identity R12 R13 R23 
(1,2) R21 = 1/R12 R23 R13 
(1,3) R32 = 1/R23 R31 = 1/R13 R21 = 1/R12 
(2,3) R13 R12 R32 = 1/R23 

(231) = (2,3)(1,2) R23 R21 = 1/R12 R31 = 1/R13 
(312) = (1,3)(1,2) R31 = 1/R13 R32 = 1/R23 R12 

 
This table is fully describes all the possibilities.  Each newly-observed ratio is directly related to 
previously-observed ratios. 
 
There is a graphical display of these permutations for 3 CSOs with which an ‘operator’ would find it rather 
easy to interpret the observed ratios.  It deals (simply) with two ratios (since the third can be obtained from 
the other two – we’re limiting ourselves to relative ratios, which implies that there are only two variable 
“SSA signatures”, and two unique ratios). 
 
For the first set of observations (involving both metric positions and the “SSA signature” signals for each 
object), the ‘key’ ratios R13 and R23 are plotted.  In this example, Object 3 is the ‘faintest’ in terms of the 
SSA signature, and R23 and R13 are consequently greater than unity.   
 



 

 

 
 
Figure 1.  Six allowed ordered pairs of ratios plotted for 3 objects.  Unity slope line plotted as visual aid. 
 
So it can be seen that the new observations fall at any of six distinct positions on the graph (including the 
original for the case where the objects have not ‘moved’ in the pattern; i.e., they retain the same relative 
ranking of “distance metric” (e.g., root-sum-square of latitude and longitude). 
 
The graph is repeated below with lines connecting the original observations (R13 = 3; R23 = 2) to the 
possible new ratios (with only one allowed for a single re-observation).  These lines, numbered 2 through 6, 
have associated P3 permutations:  Line 2 = (12), Line 3 = (312), Line 4 = (13), Line 5 = (231), Line 6 = 
(23).  So an operator can plot the original and newly-observed ratios, connect the points with a line, and 
establish the exchange(s) of objects.  We believe that an extension of the technique to four and more 
closely-space objects is possible. 
 

 
 
Figure 2.  Same as for Fig. 1, but illustrating one of several cases of before and after measurements.  Here, 
the ‘before’ measurement is the right-most point, the ‘after’ can be any of the six points.  The line codes 
show the corresponding permutation, indicating objects exchanged with respect to metric position ranking. 
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This method can be verified with existing infrared spectrometer data.  Below are shown three raw spectra 
(no instrumental or atmospheric corrections) obtained (using capabilities described in [1]) for blackbodies 
at 220, 225, & 230 C.  It appears that the three have more in common than different, since they are 
dominated by the same pixel non-uniformities and the same atmospheric CO2 absorption.  So they are ideal 
candidates for demonstrating the raw signal ratioing technique (point by point for two spectra at a time), 
and generating the six ordered pairs of ratios having a common signal in the denominator.  For this simple 
example, we take only 3 wavelength bins near 4.5 microns, and form a single product of the three ratios 
(this is an extension of a single band ratio that has the required property that Rij = 1/Rji).  We have done the 
same for wavelengths in the CO2 absorption feature to demonstrate the robustness of this ratio method to 
atmospheric attenuation. 
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Figure 3. Three uncorrected blackbody spectra at three temperatures: 220, 225, & 230 C. 
 
Plotting the six ordered pairs of signal ratio (again, these are the only ones possible for any permutation of 
the 3 objects giving rise to the three spectra), we see that the data points are well-separated on the plot, 
show the expected symmetry, and provide confidence that before and after measurements of this kind on 
three objects could be unambiguously identified on the basis of the permutation connecting the before and 
after points.  (Note, since these are actual measurement of sources, i.e., blackbodies, with an infrared 
spectrometer, noise and instrumental defects are all included in the overall result. The center point in the 
figure represents three observations of the same blackbody temperature, giving a useful indication of the 
level of noise in the approach, here very small.) 
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Figure 4.  Ordered pairs of actual signal ratios (rL,N, rM,N).  Despite the small differences actual spectra 
(think: “similar brightness as observed with a metric sensor”) shown in Figure 3, the ratio permutations 
are strongly differentiated. Blue box and red circle denote one case of transition from a “before” to an 
“after” configuration, respectively.   
 
 



 

 

3. THEORY & METHOD OF INTERPRETATION OF PLOTTED RATIOS 
 

Here is how we propose to interpret two observations (denoted before and after “configurations”, hereafter) 
on a ratio plot, as in Fig. 4.  We relate each to a reference point on the figure, the upper-most data point, 
designated Po.  Let l, m, and n represent the permutation such that the ‘generalized signal’ strengths are in 
increasing order (l < m < n).  So Po is the ordered pair (m/l, n/l), since both ratios are greater than unity, 
and the slope (n/m) is also greater than unity.  This is referred to as the identity permutation in what follows 
(even though we may never actually observe it in practice).  Now let’s examine the other two permutations 
about the unity slope line; these also have slopes greater than one.  What is the permutation corresponding 
to the smaller of the two, on the lower left?  It must be characterized by the ratios (l/n, m/n), the ordered 
pair having both ratio values less than one and slope (m/l) greater than one.  The associated permutation is 
(312), one of the two cyclic permutations.  What is the permutation corresponding to the other point?  The 
ratio pairs must be (l/m, n/m), since the first ratio is less than one and the slope (n/l) is greater than one (and 
also the steepest of all possible).  The corresponding permutation is (12), the exchange of the first and 
second objects (relative to Po).  The sub-unity-slope points on the lower right are mirror images of the three 
points discussed above, and are obtained by exchanging the x and y ratios. 
 
Based on the above observations and definition of the “identity” point Po, we suggest the following means 
to interpret before and after measurements as shown on Fig. 4.  The six points are numbered starting with 0 
for the identity and increasing clockwise to 5.  Table 2 below presents the numbering and the 
corresponding permutation relative to the identity. 
 

Table 2.  Definition of relative permutations. 
 

“Configuration” Permutation (relative to 0) Comments 
0 Identity Ratios > 1; slope > 1 
1 (23) Ratios > 1; slope < 1 
2 (23)(12) [= 231] Mixed ratios; slope < 1 
3 (13) Ratios < 1; slope < 1 
4 (23)(13) [= 312] Ratios < 1; slope > 1 
5 (12) Mixed ratios, slope > 1 

 
In the table above, we have expressed Configurations 2 and 4 as the product of (23) and the mirror image 
points (Configurations 5 and 1, respectively) on the ratio plot.   This emphasizes the exchange of the x and 
y ratio values for jumps between the mirror image points. 
 
Now, given the nice group properties of permutations, we can determine their “transition permutation” that 
takes the ‘before’ observation to the ‘after’ observation (of two configurations) as follows.  (1), determine 
the “relative permutation” (relative to Configuration 0) of the ‘before’ observation.  (2) Do the same for the 
‘after’ observation.  (3) derive the permutation that takes ‘before’ to ‘after’.  Since PijPi = Pj is the equation 
for describing the transition from Configuration i (Pi) to Configuration j (Pj) by the permutation Pij, we can 
write … 

Pij = Pj Pi
-1, 

 
… to solve for the transition permutation.  (Each of the permutations in Table 2 is equal to its inverse, 
except for the two cyclic permutations, which have each other as inverses.) For example, say we observe 
first the objects in Configuration 5, and then in Configuration 3.  Multiplying the permutations on the right 
side of Eqn. 1, (13)(12), from Table 2, one obtains 312.  So there has been a cyclic permutation of the 
objects in going between these two configurations, that is, object 1 moved to Object 2’s position, Object 2 
to Object 3, and Object 3 took the place of Object 1. 
 
Note that there are a total of 36 possible transitions between the 6 configurations, so the easy approach 
shown above helps to deal efficiently with the large number of possibilities.  (These 36 possible transitions 
are each one of the six S3 permutations.) 
 
 



 

 

4. Generalized signal ratios 
 
In addition to broadband signals observed for objects in a configuration, other kinds of “signals” that satisfy 
the Rij = 1/Rji criterion include spectral slope endpoint ratios (where endpoint signals are derived from a 
curve fit to extract maximal information from the hyperspectral data) and even from a spectral curvature 
ratio.  A curvature ratio of the form (S1*SN)0.5/Smid, where the square root is the geometric mean between 
endpoint S1 and SN, and Smid is the actual observed (curve-fitted) midpoint, satisfies the Rij = 1/Rji 
requirement.  (Curiously, a straight line has curvature if defined this way, but that’s of no consequence for 
our application.)  A curvature plot using the three blackbodies observed with the spectrometer appears in 
Fig. 5, below. 
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Figure 5.  Curvature ratios for six object configurations.  This approach could be of use for objects signal 
levels that provide inadequate discrimination capability.  The center point represents three observations of 
the same blackbody temperature, giving a useful indication of the level of noise in the approach.  Blue 
square: starting configuration (temperatures 230, 220, 225); red circle:  ending configuration 
(temperatures 225, 230, 220). 
 
Now we highlight the truly unique capability of the interpretation of “before and after” observations 
suggested here.  The before and after points in Fig. 4 are at different positions that those of Fig. 5, although 
the before and after configurations are the same.  (The relative curvature and signal levels are not positively 
correlated for blackbodies over this range of wavelengths.)  The defining configuration of the uppermost 
point also differs in Figs. 4 and 5 – a different configuration provides the maximum ratio values (Po) in the 
two cases.  The “transition permutation” can nevertheless be calculated (with Pij = Pj Pi

-1 ) for both signal 
and curvature ratios.  We find that these two radically different “generalized signals” give precisely the 
same change in configuration:  the cyclic permutation (312). 
 

5. CONCLUSIONS 
 
We have shown a general method for keeping track of variable configurations of 3 objects, using a 
“generalized” signal ratio.  The signal ratio can be a traditional broadband radiometric signal, but for 
objects of similar brightnesses that are confused by standard metric tracking sensors, would more likely be 
a multi- or hyper-spectral slope or curvature ratio.  The latter variations of ratio type can be defined to 
ensure that signal ratios have the property that Rji = 1/Rij.  These signal ratios are independent of 
atmospheric transmission since the objects share common lines of sight through the atmosphere, and are 
observed on timescales over which atmospheric transmission is relatively constant.  By plotting ordered 
pairs of ratios (Rml, Rnl) for configurations of Objects l, m, and n observed before and after a change, we 
can easily determine the permutation corresponding to the change.  The method seems extendable to 4 or 
more confused objects.  In the case of 4 objects, 24 configurations are possible, there are a total of 576 
transitions among the 24 objects (24 of which involve no change at all), and a triplet of ratios (m/l, n/l, p/l) 
for before and after configurations that is plotted in a 3-dimensional space to determine the transition 
permutation. 
 



 

 

6. REFERENCE 
 

1. P.D. LeVan & D. Maestas, “A 3.5 to 12 Micron “Dualband” Spectrometer”, Optical Engineering 
Vol 43, No. 12, page 3045 (2004). 

 
 
 


